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I. INTRODUCTION

The capacitor gauge technique' has been used to measure the free-surface velocity

of a shock-loaded tantalum disk. Stress reverberations were produced in the specimen disk

by impacting it with an alpha titanium disk of similar thickness. The first few stress

reverberations in the tantalum specimen were monitored with the free-surface-velocity

measurement. This type of measurement is useful for observing the effects of spall

fracture in a shock-loaded disk.2 Spall fracture can occur in a material if the tensile pulse

produced from the interaction of rarefaction waves exceeds a threshold stress value. If the

specimen fractures, the resulting spall signal influences the free-surface velocity.

A 40-mm-bore gas gun was used for shock-loading the tantalum disk.3 Figure 1 is a

schematic of the muzzle region of the gas gun showing a target assembly with a capacitor

gauge. The time of impact is measured with four charged tilt pins which are placed

around the specimen. The average projectile velocity at impact is measured with the three

charged pins in the side of the barrel and the tilt pins. The free surface of the specimen

forms one plate of a parallel plate capacitor. The capacitor gauge is spaced a preselected

distance behind the specimen and measures the shock-induced motion of the free surface
of the specimen. The shock transit time is determined by measuring the time difference

between the tilt output signal and the capacitor gauge signal.

The tantalum (commercially pure grade, 99 + % purity) and alpha titanium (com-

mercially pure grade 55, 99 + % purity) materials were purchased from Astro Metallurgical

Corporation, Houston, Texas. The tantalum material was obtained in the form of 3.18-

and 4.57-mm-thick plates. The alpha titanium material was obtained in the form of a

4.76-mm-thick plate. Average hardness values for machined and lapped tantalum and
titanium disks are RK 52 and RA 57, respectively. 4

The experimental techniques are presented in Section II. Section III contains the

results and discussion. Section IV contains the summary.

.. .
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Figure 1. Schematic of muzzle region of gas gun showing a

target assembly with a capacitor gauge.

II. EXPERIMENTAL TECHNIQUES

The procedure that was used to fabricate the capacitor gauge for this experiment has been

previously documented' and will not be presented here. The center conductor (Figure A-7,

Reference 1) for this gauge had a diameter of 6.35 mm. The gauge was calibrated after it was

assembled but prior to inserting the electrical components. The purpose of the calibration is to

measure the capacitance between the center conductor and a simulated specimen face as the

spacing between the specimen and center conductor is varied. A capacitance bridge system was

used for the measurements (Figure 3, Reference I). A 0.259-mm-thick spacer was used with the

gauge. (This is the distance that the capacitor gauge center conductor is spaced behind the speci-
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men free surface.) Beginning with the specimen spacing slightly larger than the spacer thickness,
the gauge capacitance was measured as the spacing was decreased. Table 1 gives the results of thle

measurements. The measurements were made at a frequency of I kHz and had a resolution of

0.001 pF. The calibration device micrometer had a resolution of 0.002 mm.

Figure 2 is a plot of the measured gauge capacitance values versus inverse specimen spacing.

The curve shown is a third-order fit to the data points using the method of least squares. Thle data

points were also fitted with fourth-order and fifth-order curves using the method of least squares.
These curves could not be distinguished from the curve in Figure 2. A second-order curve was

also fitted to the data points. This curve did not fit the data points as well as the higher-order

curve fits.

Table 1. Measurement of gauge capacitance versus
specimen spacing.

Gauge Specimen Gauge Specimen
Capacitance Spacing Capacitance Spacing

(pF) (mm) (pF) (mm)

6.163 0.269 8.371 0.114
6.212 0.259 8.534 0.109
6.274 0.249 8.810 0.104
6.336 0.239 9.035 0.099
6.405 0.229 9.387 0.094
6.482 0.219 9.711 0.089
6.565 0.209 10.211 0.084
6.672 0.199 10.553 0.079
6.761 0.189 11.287 0.074
6.883 0.179 11.951 0.069
7.018 0.169 13.044 0.064
7.178 0.159 14.128 0.059
7.362 0.149 15.936 0.054
7.579 0.139 16.805 0.052
7.827 0.129 17.203 0.051
8.145 0.119

3
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Figure 2. Capacitor gauge calibration curve. The points represent

the measurements from Table 1. The calibration curve is

a third-order best-fit curve; C is the gauge capacitance

and x is the spacing.

After the capacitance calibration measurements were obtained, the gauge was completed by

adding a 0.01-/iF coupling capacitor and a 1.5-Mil isolation resistor to the circuit. Figure 3 shows

the electrical schematic of the capacitor gauge and the voltage-limiter circuits. For this experiment

the power supply voltage was set to +500 V. At projectile impact, movement of the specimen

disk toward the right increases the gauge capacitance. Charge flows onto the gauge to maintain

the initial voltage. The flowing charge produces a negative voltage across the 50-42 termination

resistance which is recorded on the oscilloscope. The voltage-limiter circuit protects the

oscilloscope from voltage overload as the measured voltage increases.
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A target assembly containing the capacitor gauge, tantalum specimen, and tilt pins was

prepared using standard target preparation techniques. 1 3 Figure 4(a) shows the completed pro-

jectile and target assembly. The planarity of the specimen impact face was 0.3 mrad with respect

to the face of the stainless steel target cup. The tilt pin ends were positioned 4 Am above the

specimen impact face. The perpendicularity of the alpha titanium impactor face to the cylindrical

surface of the completed projectile was 3 Am. Figure 4(b) shows the recovered projectile and

target assembly pieces after impact.

TARGET ASSEMBLY
WITH CAPACITOR GAUGE

S -IEN "CO-DE SR I VOLTAGE LIMITER CIRCUIT
PROJECTILE I GRO W rM S I 

SHIELDr0DAMO O 50 1

S D 5000 VOCW1 COAX - 50Q!COAX
T -- OM '1 _____ OSCILLOSCOPE

I 0111iIN 14~ 1 .j IN914 51
1.5 M -- - i, I ,TERMINATION

I W 2.2K 4 "7A 2.2K

"l'r -" 120 VAC
I *12V -

50 l! 2001 20011 POWER MATE
COAX 1N8806 IN8806 MOULAR T

P IE MD-120D
LED LED SUPPLY

DC SUPPLY 5
0-3 kV -- . . . . . . . .

Figure 3. Schematic of capacitor gauge and voltage limiter circuits. For clarity

of presentation, the tilt pins are not shown in the target assembly.

III. RESULTS AND DISCUSSION

Figure 5 shows the tilt output and capacitor gauge oscilloscope records resulting from

impacting the alpha titanium disk onto the tantalum specimen at 0. 111 km/s. The impactor tilt for

this shot was 0.35 mrad. The voltage-time pulse in Figure 5(b) was converted to a free-suri*.e

velocity versus time profile using the equation that describes the circuit in Figure 3 and the

capacitor gauge calibration curve.
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(a)

(b)

Figure 4. Projectile and target assembly with capacitor gauge (a)

before impact and (b) after impact.
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(a)

i (b)

Figure 5. Oscilloscope data from target assembly with a capacitor gauge. Time increases from

left to right. (a) Tilt pin data record. The vertical scale is 4 V/div. The middle trace is

an initial time reference square pulse for wave velocity measurements. A 0.05-ps-period

time calibration wave is shown at the bottom. (b) Capacitor gauge data record. The

vertical scale is 5 mV/div. The capacitor gauge baseline signal is shown at the top. The

capacitor gauge signal (recorded in the oscilloscope reverse polarity mode) is displaced

below the baseline due to a leakage current in the 0.01-pF coupling capacitor. A

1 .07-ps delayed time reference square pulse used for the wave velocity measurements

passes through the capacitor gauge signal. A 0.10-s-period time calibration wave is

shown at the bottom.
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Following Rice, 5 the equation describing the circuit can be approximated with

dC
V(t) = -RE 0 dt ()

where R is the 5042 termination resistance, V(t) is the measured voltage across R, E0 is the dc

capacitor gauge voltage, and C is the measured gauge capacitance. For this experiment, because

of a leakage current in the 0.01-pF coupling capacitor, a voltage less than the +500 V dc supply

voltage was applied to the capacitor gauge. A leakage current value of 183 PA was obtained using

the measured +9.2 mV offset voltage in Figure 5(b). (The capacitor gauge signal was recorded in

the oscilloscope reverse polarity mode.) The capacitor gauge voltage is given by

E0 = 500V-(183)(1.5)V = +225 V.

The capacitor gauge calibration curve from Figure 2 is

0.4045 0.0074 0.0010CQx) = 4.695 + - - + (2)
x X2  X 3  '

where C(x) is in picofarads and x is in millimeters. The specimen free-surface velocity can be

obtained from the equation,

Ufd(t) -I dC \IdC . (3)

dCdt dtIdxI4 dC
Substituting -d from Equation (1) into Equation (3) gives

0.08889 V(t)
Ufs(t) = dC (4)

dx
dC

where V(t) is in millivolts, LC is in picofarads per millimeter, and Ufs is in millimeters per micro-

second or kilometers per second. - is obtained from Equation (2);

dC 0.4045 0.0148 0.0030

dx x2  + x3  - x4  (5)

8
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To find the free-surface velocity Uft from Equations (4) and (5), it is first necessary to find

the free-surface position x. Integrating Equation (I ) gives

Cx) =C f Vdt, (6)C~x)= Co  RE0 0

where x0 is the initial specimen spacing and Co = C(x0 ). Substituting C(x) from Equation (2)

and the parameters x0 =0.259 mm, Co = 6.204 pF, R = 50.0 12, and E0 
= 225 V into

Equation (6) gives

0.0010 0.0074 0.40453 _2 + - = 1.509 - 0.08889 f Vdt, (7)
x 0

where x is the free-surface position in millimeters and ft Vdt is the area under the voltage-time
0

pulse in millivolt-microseconds. This cubic equation is solved for each voltage-time integral value

to find x as a function of time.

To obtain x and Uf , an enlarged photograph was made of the capacitor gauge oscilloscope

trace shown in Figure 5(b). The voltage-time pulse was digitized from this photograph. The area

under the voltage-time pulse was obtained for selected times by cutting the photograph into pieces

and weighing each piece. A standard-grid piece was weighed for calibration. This information was

used with Equations (4), (5), and (7) to obtain x and Uf,* Table 2 gives the results of the

computation. The estimated uncertainity in the values is a few percent.

The x values in Table 2 decrease from 0.259 to 0.157 mm. This range corresponds to the

initial portion of the calibration curve in Figure 2 which can be approximated with a straight line.

A straight-line least-squares fit of the initial 15 data points in Table I gives C(x) = 4.615 +

0.4099/x for the capacitor gauge calibration curve for this region. When this calibration curve was

used in the computation, the x and U1, values differed from those in Table 2 by only a few

percent.

Figure 6 is a plot of the digitized free-surface-velocity data of Table 2. This profile shows

stress reverberations in the tantalum specimen. The initial compressive wave consists of an elastic

wave of amplitude 0.061 km/s followed by a plastic wave of slightly larger amplitude. The initial

compressive wave is followed by a tensile wave and then a second compressive wave with an

9
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Table 2. Digitized capacitor gauge voltage data and the corresponding

free-surface-position and free-surface-velocity results for tantalum.

Capacitance
Voltage-Time Position-

Integral' Free-Surface Derivativec Free-Surface
Time" Voltages t Vdt Positionb dC Velocityd

0
dx

t V x Ufa
(us) (mV) (mV Js) (mm) (pF/mm) (km/s)

0.00 0.00 0.00 0.259 -5.84 0.0000
0.07 -4.04 -0.14 0.257 -5.95 0.0604
0.13 -4.23 -0.37 0.254 -6.11 0.0615
0.17 -4.33 -0.60 0.250 -6.29 0.0612
0.27 -4.23 -1.02 0.244 -6.60 0.0570
0.32 -4.34 -1.22 0.242 -6.75 0.0572
0.37 -4.46 -1.42 0.239 -6.91 0.0574
0.47 -4.72 -1.90 0.233 -7.29 0.0575
0.57 -5.12 -2.38 0.227 -7.69 0.0592
0.62 -5.65 -2.93 0.221 -8.15 0.0617
0.76 -6.16 -3.52 0.215 -8.67 0.0631
0.83 -6.25 -3.86 0.212 -8.97 0.0619
0.87 -5.10 -4.12 0.209 -9.21 0.0492
0.92 -2.77 -4.32 0.207 -9.39 0.0262
0.98 -1.44 -4.40 0.206 -9.47 0.0135
1.03 -0.77 -4.45 0.206 -9.51 0.0072
1.07 -0.63 -4.48 0.206 -9.54 0.0059
1.27 -0.38 -4.57 0.205 -9.63 0.0035
1.47 -0.35 -4.65 0.204 -9.70 0.0032
1.67 -0.35 -4.73 0.203 -9.78 0.0032
1.77 -0.35 -4.77 0.203 -9.82 0.0032
1.83 -1.19 -4.82 0.203 -9.86 0.0107
1.88 -3.10 -4.91 0.202 -9.95 0.0277
1.92 -4.44 -5.10 0.200 -10.1 0.0389
1.97 -5.15 -5.34 0.198 -10.4 0.0441
2.07 -5.77 -5.88 0.193 -10.9 0.0470
2.17 -6.31 -6.50 0.189 -11.5 0.0486
2.28 -6.92 -7.18 0.183 -12.3 0.0501
2.37 -7.58 -7.93 0.178 -13.1 0.0514
2.48 -8.27 -8.75 0.173 -14.0 0.0524
2.55 -8.65 -9.33 0.169 -14.7 0.0522
2.61 -8.90 -9.90 0.166 -15.4 0.0513
2.66 -8.08 -10.31 0.164 -15.9 0.0451
2.72 -5.19 -10.69 0.161 -16.4 0.0281
2.78 -3.15 -10.92 0.160 -16.7 0.0168
2.84 -2.12 -11.09 0.159 -16.9 0.0111
2.91 -1.50 -11.21 0.159 -17.1 0.0079
2.98 -1.25 -11.30 0.158 -17.2 0.0065
3.05 -1.10 -11.38 0.158 -17.3 0.0056
3.12 -1.12 -11.46 0.157 -17.4 0.0057

These value were obtained from the capacitor page voltage record shown In FIgure 3.
bObtained by solving the cubic Equation (7) for each voltage-tlme Integral value.
cOtrtalnred from Equation (S) for each free-smrface-poaltion value.
dobtalned from Equation (4).

10



amplitude of approximately 0.05 km/s. The time duration of each of the waves is approximately

0.9 As. The flat, low-amplitude tensile region (no signal reversal) suggests that no spall fracture

occurred during the tensile portion of the wave. Taylor reported a pullback velocity (decrease

in the free-surface velocity at first wave reversal) for spall fracture of 0.12 km/s for a 1.5-ps-wide

compressive pulse in tantalum. 6 Isbell et al. obtained a pullback velocity for spall of 0.19 km/s

for a 0.8- As-wide compressive pulse in tantalum. 7 These reported values are larger than the 0.06-

km/s pullback velocity for the 0.9-ps-wide compressive pulse in Figure 6.

0.10

0.08
E

0.06
W

-a

A 0.04

== 0.02

0.5 1.0 1.5 2.0 2.5 3.0 3.5

TIME I/Ls)

Figure 6. Free-surface-velocity profile for the 3.73-mm-thick tantalum

specimen impacted at 0.111 km/s with a 2.65-mm-thick

alpha titanium impactor.

Table 3 summarizes the shock wave results for tantalum. The measured 4.15-km/s elastic

wave velocity is the same as the ultrasonic longitudinal wave velocity reported by Isbell et al. 7 The

elastic wave particle velocity value of 0.031 km/s is in good agreement with the 0.029-km/s value

reported by Isbell et al.7 The 2.1-GPa Hugoniot elastic limit value is slightly larger than the

1.8-GPa value for a propagation distance of 3.8 mm reported by Isbell et al. 7 Using the reported

stress - particle-velocity relationships for alpha titanium (a, = 0.25 + 22.5 up + 4.99 u2

11
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oH < 9 GPa, u in km/s) and tantalum 7 (ol = 0.4 + 55.0 up + 21.5 u2  < 20(iPau in

kms) gives an initial stress and particle velocity of 2.1 GPa and 0.03 i km/s, respectively, for alpha

titanium impacting tantalum at 0. 1I i1 km/s. These values are in good agreement with the measured

2.2-GPa stress and 0.032-km/s particle velocity for the plastic wave in Table 3. The measured

3.19-km/s shock wave velocity in Table 3 is slightly less than a calculated value of 3.40 km/s

obtained from the tantalum shock-velocity - particle-velocity relationship 7 U. = 3.36 + 1.24 up,

After shock loading, the recovered tantalum specimen was sectioned on a diameter and

polished. Figure 7 is a photograph of this surface. No fracture damage was revealed by microscopic

observation. An initial tensile pulse amplitude of about 2 GPa is estimated for this specimen based

on the shock compression results of Table 3. This value is less than the 4.4- and 6.8-GPa spall

strength values that have been reported for tantalum. 2' 7

Figure 7. Photograph of the recovered, sectioned, and polished shock-loaded

tantalum specimen. The bottom edge of the disk is the impact surface.

IV. SUMMARY

The free-surface velocity of a shock-loaded tantalum disk has been measured. Stress re-

verberations were produced in the disk by impacting it with an alpha titanium disk at a velocity

of 0. 11I km/s. The tensile pulse amplitude and duration were less than that required for spall

fracture in the tantalum disk. The shock wave measurements agree with the results of previous

work.

13
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